Signal Processing in Cancer Diagnosis and Prediction

نویسندگان

  • Peng Qiu
  • K. J. Ray Liu
چکیده

Title of dissertation: MODEL-BASED GENOMIC/PROTEOMIC SIGNAL PROCESSING IN CANCER DIAGNOSIS AND PREDICTION Peng Qiu Doctor of Philosophy, 2007 Dissertation directed by: Professor K. J. Ray Liu Department of Electrical and Computer Engineering In recent years, high throughput measurement technologies (gene microarray, protein mass spectrum) have made it possible to simultaneously monitor the expression of thousands of genes or proteins. A topic of great interest is to study the difference of gene/protein expressions between normal and cancer subjects. In the literature, various data-driven methods have been proposed, i.e. clustering and machine learning methods. In this thesis, an alternative model-driven approach is proposed. The proposed dependence model focuses on the interactions among genes or proteins. We have shown that the dependence model is highly effective in the classification of normal and cancer data. Moreover, different from data-driven methods, the dependence model carries specific biological meanings, and it has the potential for the early prediction of cancer. The concept of dependence network is proposed based on the dependence model. The interactions and co-regulation relationships among genes or proteins are modeled by the dependence network, from which we are able to reliably identify biomarkers, important genes or proteins for cancer prediction and drug development. The analysis extends to cell cycle time-series, where one subject is measured at multiple time points during the cell cycle. Understanding the cell cycle will greatly improve our understanding of the mechanism of cancer development. In the cell cycle time-series, measurements are based on a population of cells which are supposed to be synchronized. However, continuous synchronization loss is observed due to the diversity of individual cell growth rates. Therefore, the time-series measurement is a distorted version of the single-cell expression. In this thesis, we propose a polynomial-model-based resynchronization scheme, which successfully removes the distortion. The time-series data is further analyzed to identify gene regulatory relationships. For the identification of regulatory relationships, existing literatures mainly study the relationship between several regulators and one regulated gene. In this thesis, we use the eigenvalue pattern of the dependence model to characterize several regulated genes, and propose a novel method that examines the relationship between several regulator and several regulated genes simultaneously. MODEL-BASED GENOMIC/PROTEOMIC SIGNAL PROCESSING IN CANCER DIAGNOSIS AND PREDICTION

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Prediction of Benefit Finding in Cancer Based on Demographic and Clinical Characteristics, Illness Cognition, and Emotional Processing in Patients Referred to Kosar Specialized Clinic in Semnan in 2020: A Descriptive Study

Background and Objectives: In every disease there are always opportunities for improvement of the individual status, part of which is affected by person's psychological status. Therefore, this study aimed to predict benefit finding in cancer based on demographic and clinical characteristics, illness cognition, and emotional processing in cancer patients. Materials and Methods: This descriptive...

متن کامل

Application of Signal Processing Tools for Fault Diagnosis in Induction Motors-A Review-Part II

The use of efficient signal processing tools (SPTs) to extract proper indices for the fault detection in induction motors (IMs) is the essential part of any fault recognition procedure. The 2nd part of this two-part paper is, in turn, divided into two parts. Part two covers the signal processing techniques which can be applied to non-stationary conditions. In this paper, all utilized SPTs for n...

متن کامل

A Review of Application of Signal Processing Techniques for Fault Diagnosis of Induction Motors – Part I

Abstract - Use of efficient signal processing tools (SPTs) to extract proper indices for fault detection in induction motors (IMs) is the essential part of any fault recognition procedure. The Part1 of the two parts paper focuses on Fourier-based techniques including fast Fourier transform and short time Fourier transform. In this paper, all utilized SPTs which have been employed for fault fete...

متن کامل

Detection of Breast Cancer Progress Using Adaptive Nero Fuzzy Inference System and Data Mining Techniques

Prediction, diagnosis, recovery and recurrence of the breast cancer among the patients are always one of the most important challenges for explorers and scientists. Nowadays by using of the bioinformatics sciences, these challenges can be eliminated by using of the previous information of patients records. In this paper has been used adaptive nero fuzzy inference system and data mining techniqu...

متن کامل

Prediction of Breast Tumor Malignancy Using Neural Network and Whale Optimization Algorithms (WOA)

Introduction: Breast cancer is the most prevalent cause of cancer mortality among women. Early diagnosis of breast cancer gives patients greater survival time. The present study aims to provide an algorithm for more accurate prediction and more effective decision-making in the treatment of patients with breast cancer. Methods: The present study was applied, descriptive-analytical, based on the ...

متن کامل

Estimation of LPC coefficients using Evolutionary Algorithms

The vast use of Linear Prediction Coefficients (LPC) in speech processing systems has intensified the importance of their accurate computation. This paper is concerned with computing LPC coefficients using evolutionary algorithms: Genetic Algorithm (GA), Particle Swarm Optimization (PSO), Dif-ferential Evolution (DE) and Particle Swarm Optimization with Differentially perturbed Velocity (PSO-DV...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007